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Abstract
The influence of Kondo physics on the properties of a spin glass is considered. Numerical
results obtained on a 20 × 20 × 20 lattice are presented for the magnetization, the distribution
of fields, and the impurity spin susceptibility in the spin glass phase. We discuss how these
quantities depend on the system’s history; we show how they are influenced by Kondo physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of magnetic impurities in metals has been of
considerable interest for some time [1]. The interaction
between the conduction electrons and the magnetic impurities
is described by the Kondo Hamiltonian [2]

HKondo = J
∑

i

τi · S(ri ). (1)

In equation (1), τi is the spin operator of the i th impurity
(located at ri ); S(ri ) is the conduction electrons’ spin operator
at ri ; J is the exchange interaction between the conduction
electrons and the magnetic impurities. For the rest of this work,
we will focus on the case of spin-1/2 impurities; we will take
the exchange interaction to be antiferromagnetic J > 0.

Magnetic impurities cause spin-flip scattering of the
conduction electrons; they give rise to the Kondo effect with
its dynamically generated scale, the Kondo temperature TK [1].
The physics behind this dynamically generated scale is a
correlated many-body state, where the impurity spin is locked
in a singlet with a cloud of electrons—the Kondo screening
cloud. Besides the Kondo effect, the conduction electrons
mediate an effective interaction between impurities—the
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [3]—
given by

HRKKY = − 1
2

∑

i �= j

Ki, j τi · τ j . (2)

As the impurities are in random positions, it is a random
interimpurity interaction. This random interaction drives the
system into a spin glass phase, having a complex free-energy
landscape with many metastable states.

Recently, the resistivity ρ(T ) of gold wires doped with
very dilute amounts of iron was measured; signs of both

the Kondo effect and spin glass physics were observed in
ρ(T ) [4]. In these systems, the concentration of iron was more
dilute than in alloys where spin glass physics was observed
previously; in describing these systems, a proper treatment
of both the Kondo effect as well as spin glass physics is
necessary. Motivated by these experiments, we would like
to understand the interplay between the Kondo effect and
spin glass physics i.e. the interplay between equations (1)
and (2). We would particularly like to understand the properties
of partially screened impurities and the effects of coherence
between partially screened impurities.

The rest of this paper is organized as follows. In
section 2, we describe the model considered in this work and
the approach employed to treat the model. Section 3 presents
results obtained numerically on a 20×20×20 lattice, showing
how the properties of the spin glass phase are influenced by
Kondo physics. In particular, we first investigate hysteresis
in the field-dependent magnetization in the glass phase. We
then present results for the distribution of internal fields and
discuss its history dependence. Finally, we present results
for the impurity spin susceptibility. Previous work studying
the interplay of random interimpurity interactions and the
Kondo effect employed the replica formalism [5]. These works
focused on the ‘replica-symmetric’ phase(s); the properties of
the glass phase itself were not discussed. Works which did
consider the properties within the glass phase did not take
into account the Kondo effect [6–8]. Section 4 presents some
concluding remarks.

2. The model and approach

To make progress, we consider an anisotropic limit of the
exchange coupling in equation (1): J xy �= J z . It is known
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that the Kondo Hamiltonian with J xy �= J z has the same low-
energy physics as the isotropic limit. Furthermore, rather than
consider a collection of randomly placed impurities, we follow
other works and put the impurity spins on a cubic lattice; we
take the {Ki, j } to be Gaussian distributed random variables
between nearest neighbor sites

P(Ki, j ) =
√

1

2πK 2
exp

[−K 2
i, j/2K 2

]
. (3)

Finally, to simplify the analysis, we take the interimpurity
interaction in equation (2) to be an Ising interaction.
Physically, such an interaction could arise due to crystal field
effects. More generally, interactions which break the spin
SU(2) symmetry are known to give rise to Ising-like behavior,
as these interactions make it difficult for the impurity spins to
rotate [6]. Therefore, the Hamiltonian we consider is H =
H0 + Himp, where H0 is the free Hamiltonian of the conduction
electrons and

Himp = J xy
∑

i

[
τ+

i S−(ri )+ τ−
i S+(ri )

]

+ J z
∑

i

τ z
i Sz(ri )− Hz

∑

i

τ z
i − 1

2

∑

i �= j

Ki, j τ
z
i τ

z
j . (4)

Note that in equation (4), we have included an external
magnetic field Hz acting on the impurity spins.

To analyze the physics, we treat the RKKY interaction
in mean-field theory. This approach, which is motivated
by the seminal work of [9], has been successfully used to
study conventional spin glasses (where the Kondo effect is
ignored) [7, 8]; it has recently been used to study history-
dependent phenomena in the transverse field Ising glass [10].
In this approximation, Himp � ∑N

i=1 H i
imp, where

H i
imp = J xy

[
τ+

i S−(ri )+ τ−
i S+(ri)

] + J zτ z
i Sz(ri)+ hi τ

z
i ,

(5)
where hi = Hz + hint

i with

hint
i =

∑

j

Ki, j 〈τ z
j 〉 (6)

being an effective, random field acting on impurity-i due to the
rest of the impurities. The {〈τ z

j 〉} are to be determined self-
consistently. As the fields {hi } are random, physical quantities
must be averaged over the distribution of fields

P(hi ) =
〈
δ

(
hi −

∑

j

Ki, j 〈τ z
j 〉

)〉

Ki, j

, (7)

where 〈 〉Ki, j denotes averaging over the distribution of
couplings {Ki, j }. Within this approach, information about the
various phases which arise is contained in P(hi ).

A few words are in order about the mean-field approach
utilized in this work. This approach is valid to describe the
finite temperature properties within the glass phase. It is not
expected to describe the properties at T = 0 or the critical
behavior at a phase transition, as fluctuations are ignored.
Furthermore, this approach is implicitly nonergodic and probes
the system on intermediate timescales. This is because a

particular minimum on the free-energy manifold (in which
the spin glass was originally prepared) is followed with field
and/or temperature. (See below.) As will be seen explicitly
below, changes in field and temperature distort the free-energy
manifold—minima of the free-energy become displaced or
even disappear. Hence, on short timescales, the system may
not have time to re-equilibrate after the field or temperature has
been changed. On long timescales, however, thermal activation
or/and tunneling will allow the system to find its way out of the
minimum in which the system has been prepared.

To proceed further, we expand the conduction electron
operator in spherical waves centered about each impurity.
Furthermore, we approximate by ignoring the overlap between
conduction electron wave functions centered about different
impurities. This approximation is justified, provided the
concentration of impurities is sufficiently dilute and the
distances between impurities are large—the effects ignored
are subleading [11]. In this approximation, each impurity is
coupled to its own bath of conduction electrons. As we are
taking the interaction between the conduction electrons and
the impurity to occur at a point (see equation (5)), only a
single harmonic—namely, the s-wave channel—couples to the
impurity [12]. Focusing on this s-wave channel, we can write
an effective one-dimensional model for the conduction electron
bath centered about each impurity. Our Hamiltonian becomes
H = ∑N

i=1 Hi where Hi = H i
0 + H i

imp with

H i
0 = −ivF

∫
dxψ†

R,i,s∂xψR,i,s + · · · ; (8a)

H i
imp = 2πvFλ

xy
[
τ+

i J −
R,i(0)+ τ−

i J +
R,i (0)

]

+ 2πvFλ
zτ z

i J z
R,i (0)+ hiτ

z
i . (8b)

In equation (8a), ψR,i,s destroys a (right-moving) electron with
spin-s in the bath centered about the i th impurity; vF is the
Fermi velocity; the ellipses represent higher harmonics, which
do not couple to the magnetic impurities. In equation (8b),

J αR,i(0) = (1/2)ψ†
R,i,s(0)σ

α
s,s ′ψR,i,s ′ (0),

with {σαs,s ′ } (α = x, y, z) being the Pauli matrices; λxy =
J xyρ0 and λz = J zρ0 are dimensionless couplings (ρ0 is the
conduction electrons’ density-of-states).

In what follows, it will prove useful to utilize the boson
representation of one-dimensional fermions [13]. To do so,
the electron operator is written as ψR,i,s ∼ ei

√
4πφR,i,s . It will

also prove useful to form charge and spin fields φR,i,ρ/σ =
(φR,i,↑ ± φR,i,↓)/

√
2. In terms of these variables,

Hi = vF

∫
dx(∂xφR,i,σ )

2 + (∂xφR,i,ρ)
2

+ vFλ
xy

α

[
τ+

i e−i
√

8πφR,i,σ (0) + τ−
i ei

√
8πφR,i,σ (0)

]

+ vFλ
z
√

2πτ z
i ∂xφR,i,σ (0)+ hi τ

z
i . (9)

(α is a short-distance cut-off.) Notice that only the spin fields
couple to the magnetic impurities; the charge fields decouple.

To treat the Kondo effect nonperturbatively, we perform a
unitary transformation

U = exp
(
iβτ zφR,i,σ (0)

)

2
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with β = √
π(

√
2 − 1), which ties (part of) the conduction

electrons’ spin to the impurity [13]. Then, we introduce new
fermion fields, di ∼ τ−

i , and ψ̃R,i ∼ ei
√

4πφR,i,σ . Upon
performing these transformations, Hi becomes

Hi = vF

∫
dx(∂xφR,i,ρ)

2 − ivF

∫
dxψ̃†

R,i∂xψ̃R,i

+ vFλ
xy

√
2π

α

(
d†

i ψ̃R,i (0)+ ψ̃
†
R,i (0)di

)

+ hi

(
d†

i di − 1

2

)
+ vF

√
2π

[
λz −

(
1 − 1√

2

)]

×
(

d†
i di − 1

2

)
ψ̃

†
R,i (0)ψ̃R,i (0). (10)

For the remainder of this work, we will focus on the
Toulouse point, λz = 1 − 1/

√
2. The Toulouse point is

known to have the same low-energy fixed point as the SU(2)
symmetric Kondo model. However, the analysis simplifies
at this point in parameter space—the marginally relevant
operator near the ultraviolet fixed point (responsible for the
Kondo logarithms) is fine-tuned away; similarly, the leading
irrelevant operator near the infrared fixed point is also fine-
tuned away [13].

3. Properties of the spin glass phase

From equation (10), we can readily understand how the
properties of a spin glass are affected by Kondo physics. To
properly describe the glass phases, 〈τ z

i 〉 for the i th spin must
be computed self-consistently, taking into account correlations
with all the other {〈τ z

j 〉}∀ j . To this end, we perform a
‘spatially-unrestricted mean-field’ calculation to determine the
{〈τ z

i 〉} and, hence, the hi in equation (6). Computing 〈τ z
i 〉 using

equation (10), we obtain

〈τ z
i 〉 = 1

π
Im

[
ψ

(
1

2
+ Tk

4πT
+ i

hi

2πT

)]
,

where ψ(z) is the digamma function [14], and TK =
2πvF(λ

xy)2/α is the Kondo temperature at the Toulouse point.
Hence, the {hi} are determined by

hi = Hz +
∑

j �=i

Ki, j
1

π
Im

[
ψ

(
1

2
+ TK

4πT
+ i

h j

2πT

)]
. (11)

Equation (11) (which follows from equation (10)) is the central
result of this work; the results presented in this section follow
from numerical solutions of equation (11).

In equation (11), we are not considering the contribution
from the reaction term. Similar to other works, we
have found the reaction term to give severe problems
with convergence [15]. It is well known that the mean-
field equations without the reaction term overestimates the
glass freezing temperature Tg [6, 9]; properties near the
glass transition are not expected to be described correctly.
Reference [16] considered a spin glass model where the
reaction term vanishes; it was found that the properties near
Tg were different from models where the reaction term must
be considered. However, the model in [16] was found to
have properties in the low temperature phase similar to models

with a reaction term, namely a complex free-energy landscape
with many metastable states. It has been found in studies
of conventional spin glasses [7, 8] and also in the transverse
field Ising glass [10] that the properties within the various
phases and, particularly, the history-dependent phenomena
are described reasonably well when the reaction term is not
considered. Hence, equation (11) is expected to capture the
essential physics of the glass phase in the model considered in
this work.

To clearly discuss the influence of Kondo physics on the
system, we formally consider the T → 0 limit. By doing so,
we are able to focus on the interplay between Kondo screening
and interimpurity coherence i.e. the interplay between TK and
K . The results presented below were generated by considering
impurity spins on a 20 × 20 × 20 lattice, with equation (11)
solved self-consistently at each site for various (random)
configurations of the {Ki, j } and different values of the external
field Hz.

3.1. Hysteresis loops

We begin by considering the system’s field-dependent
magnetization Mz and, in particular, the hysteretic behavior
exhibited by Mz in the spin glass phase. (Mz has been plotted
as a fraction of M0, the magnetization one would obtain if all
the impurity spins are aligned.) This hysteretic behavior arises
directly from the complexity of the free-energy manifold.
Indeed, as the external field is varied, a given minimum of
the free-energy becomes unstable and the system goes into a
nearby minimum. As the free-energy manifold is very complex
with many local minima, the system can find a new minimum
with magnetization similar to the original minimum. The free-
energy manifold becomes ‘smoothed’ (i.e. less complex), and
the hysteretic behavior is lost as the moments become screened
via the Kondo effect.

The hysteresis loops presented below were generated by
preparing the system with different initial values of the external
field and by sweeping the external field in different ways. In
general, however, the calculation proceeded by preparing the
impurity spins in a random configuration and with a particular
value of the external field. Equation (11) was then used to
obtain a self-consistent solution for the {hi}. The external
field was then gradually increased or decreased; the previously
obtained (self-consistent) spin configuration was used as the
starting seed in the calculations for the new value of the
external field. This procedure to determine the {hi} was
continued as the external field was swept until a complete
hysteresis loop was generated.

Figure 1 shows hysteresis loops for various values of TK,
where the field was swept symmetrically. More specifically,
the system was prepared in a random configuration in zero
external field; the field was increased to a finite positive value
Hz/K = 15. The external field was then decreased to
Hz/K = −15, and finally increased back to Hz/K = 15,
thus generating a complete hysteresis loop. We see that the
hysteresis loops in figure 1 are broader for smaller values
of TK; they become narrower as TK increases. Eventually,
the hysteretic behavior disappears for TK sufficiently large,
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Figure 1. Hysteresis loops generated by sweeping the external field
symmetrically.

Figure 2. Displaced hysteresis loops generated by sweeping the
external field asymmetrically.

TK � 3. Hence, we see how the free-energy manifold goes
from having many local minima (for small TK) to having a
single minimum as the magnetic impurities become screened
due to the Kondo effect.

More interesting, however, are the hysteresis loops in
figure 2, which were obtained by sweeping the external fields
asymmetrically. More specifically, these hysteresis curves
were generated by preparing the impurity spins in a random
configuration and in a large external magnetic field, Hz/K =
6.0; the external field was decreased to a negative value
Hz/K = −0.5. Then the external field was increased to
Hz/K = +0.5, and then decreased back to Hz/K = −0.5,
thus generating a complete hysteresis loop. Here, we see
the hysteresis loops are displaced along the y-axis for smaller
values of TK. As TK is increased, the hysteresis loops shift
toward the origin and eventually become centered about the
origin. Hence, for smaller values of TK, the system can
maintain a permanent magnetization in addition to exhibiting
hysteresis; for TK > 2.0, this permanent magnetization
disappears. Eventually, the hysteretic behavior is lost for TK

large enough, TK � 3 i.e. when the impurities become strongly
screened by the conduction electrons.

Figure 3. Minor hysteresis loops generated by sweeping the external
field asymmetrically.

Figure 4. P(hi) for various values of TK in zero external field,
Hz = 0.

Figure 3 shows further hysteresis loops for various values
of TK. Here, as in figure 2, the field was swept asymmetrically.
However, in this case the system was prepared in zero external
field (as compared to figure 2, where the system was prepared
in a large external field); then the external field was increased
to a finite, positive value Hz/K = 0.5. The field was then
decreased to zero and subsequently increased back to Hz/K =
0.5, thus generating a complete hysteresis loop. Here, we
see so-called ‘minor hysteresis loops’. These minor hysteresis
loops persist until TK � 3.0.

3.2. Distribution of fields

We now show results for the distribution of fields P(hi ).
Figure 4 shows results for P(hi ) in zero external field for
several values of TK. The results were generated by averaging
over 100 realizations of the {Ki, j}. We see that for smaller
values of TK, P(hi) has maxima for hi �= 0. This occurs
because the system lowers its energy when the impurity spins
are aligned with the internal fields acting on them. (See
equation (5).) As TK increases—as the impurity spins are more

4
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Figure 5. P(hi) for TK = 1.5 at various points along the hysteresis
loop from figure 2.

strongly screened by the conduction electrons—the peaks in
P(hi) shift toward hi = 0. This occurs because for TK �= 0,
screening of the impurity spins due to the Kondo effect reduces
the effective magnitude of their moments, and hence reduces
the effective field they can produce. As a result, the probability
for hi at a site to be zero is increased. For TK large enough,
P(hi) is peaked at hi = 0 and has a Gaussian shape.

We now consider how the distribution of fields depends
on the system’s history. Figure 5 shows results for P(hi )

for TK = 1.5 at various points along the hysteresis curve in
figure 2. In general, we see that P(hi ) is not symmetric about
hi = 0 due to the finite magnetization—M > 0 (M < 0)
gives rise to P(hi ) with more weight for hi > 0 (hi < 0). In
particular, it is interesting to note that panels (b) and (e) have
Hz = 0. However, P(hi ) in panel (b) ((e)) has more weight for
hi > 0 [hi < 0], thus showing the importance of the system’s
history on P(hi).

3.3. Impurity spin susceptibility

Having probed the free-energy manifold, we now turn to
the impurity spins’ dynamics; in particular, we consider the
imaginary part of the impurity spin susceptibility Im[χ(ω, T )].
This quantity could be measured in experiments which probe
the impurity spins’ excitation spectrum e.g. neutron scattering
experiments. From equation (10), we obtain

Im[χ(ω, T )] = 1

2π

TK

ω2 + T 2
K

{
Im

[
ψ (z+)− ψ (z−)

]

+
(

TK

ω

)
Re

[
ψ (z+)+ ψ (z−)− 2 ψ (z0)

]}
, (12)

where ψ(z) is the digamma function [14], and

z0 =
(

1

2
+ TK

4πT

)
+ i

2πT
hi ,

z± =
(

1

2
+ TK

4πT

)
+ i

2πT
(hi ± ω).

In figure 6 we plot χ ′′, the imaginary part of the impurity spin

Figure 6. Main panel: χ ′′ for several values of TK in zero external
field (Hz = 0). Inset: χ ′′ at several points along the hysteresis curve.

susceptibility averaged over the distribution of fields,

χ ′′ ≡
∫

dhi P(hi ) Im[χ(ω, T = 0)]. (13)

The main panel in figure 6 shows χ ′′ versusω for several values
of TK, with the external magnetic field set to zero, Hz = 0. The
curves in figure 6 were obtained by taking the expression in
equation (12) and averaging over the appropriate distribution
of fields from figure 4. We see that χ ′′ has its maximum and
minimum near ω = 0 for the smallest value of TK (TK = 0.1).
As TK increases, the maximum and minimum in χ ′′ shifts away
from ω = 0 and becomes broader. It is interesting to note that
P(hi) is quite broad for small values of TK, and its maxima
are shifted away from hi = 0. On the other hand, P(hi )

has most of its weight near hi = 0 for larger values of TK.
However, the behavior of P(hi ) does not appear to be reflected
in χ ′′. This occurs because we have taken the interimpurity
interaction to be Ising-like—when TK → 0 the impurity spins
have no dynamics. Hence, when TK → 0 all of the weight of
χ ′′ is shifted toward ω = 0.

The inset of figure 6 shows χ ′′ for TK = 1.5 at
several points along the hysteresis curve from figure 5. More
specifically, the blue diamonds, red triangles, green squares,
and violet circles were computed at points (a), (b), (d), and (e),
respectively on the hysteresis curve from figure 5 (averaging
equation (12) over the distribution of fields at those points).
The curves are, for all practical purposes, indistinguishable.

4. Concluding remarks

To summarize, we discussed the influence of Kondo physics
on the properties of a spin glass. By considering the hysteresis
in the glass phase, we probed the complexity of the free-
energy manifold and how it is affected by Kondo physics.
In particular, we saw how the hysteretic behavior is lost
as the impurities become screened and, concomitantly, the
free-energy manifold becomes smoothed. Furthermore, we
considered the impurity spin’s dynamics in the glass phase

5
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and how it is influenced by Kondo physics. Interesting future
work would be to consider impurities with larger spins (rather
than spin-1/2 impurities), as well as the RKKY and random
Dzyaloshinskii–Moriya interactions.
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